{ "cells": [ { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "from keras.activations import *\n", "from keras import backend as K\n", "import numpy as np\n", "\n", "inputs = np.arange(-3, 3.1, .1)\n", "tanh_f = tanh(inputs)\n", "sigmoid_f = sigmoid(inputs)\n", "softsign_f = softsign(inputs)\n", "\n", "linear_out = linear(inputs)\n", "relu_f = relu(inputs)\n", "elu_f = elu(inputs)\n", "softplus_f = softplus(inputs)" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEACAYAAACwB81wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VNXWx/HvpnekhZIQUDohJPQaCE2adFAEC1a46sX3\nWkBFL7ELXBtWEESBS72C9BKEICVAIKQQCISa0BIg9BJS9vvHjjSBtMmcmcz6PM95JuXMzBLhl519\n9llbaa0RQgiR9+WzugAhhBD2IYEvhBAuQgJfCCFchAS+EEK4CAl8IYRwERL4QgjhImwS+EqpqUqp\neKVUxH3OmaiUilFKhSmlfG3xvkIIITLPViP8aUDXe31TKdUdqKG1rgUMB3600fsKIYTIJJsEvtZ6\nI3D2Pqf0Aaann7sVKK2UqmiL9xZCCJE59prDdwfibvn8WPrXhBBC2IlctBVCCBdRwE7vcwyoesvn\nHulfu41SShr7CCFENmitVUbn2DLwVfpxN4uBl4G5SqmWwDmtdfzdTnTmZm4BAQEEBARYXUa2Sf3W\nytP1p6TAsWMQFwfHj5vjxAnzePIknDoFCQlw+jQUKQLlykHZslCmzM3H0qXNUarUzaNkSShRAooX\nv/lYrBgULQr589umdiegVIZZD9go8JVSswB/oJxSKhYYCxQCtNZ6stZ6uVKqh1JqP3AZeMYW7yuE\ncCDJyRARAfv2wd69sH8/HD5sjmPHwM0NqlYFd3eoUsUc9etDpUrmexUqQPnyJvBFrrBJ4Guth2Ti\nnFds8V5CCIulppowDw83AR8eDpGRcPQoLFwIdepA7drQpg088QRUq2aCvnBhqyt3efaaw3cJ/v7+\nVpeQI1K/tRy2/oQE2LLFHMHBsH27GZE3bGiOZ54Bb2/8Y2OhUyerq70vreHsWTOzdPTozSM62t/q\n0uxCOdKcuVJKO1I9Qrikc+cgKAjWrDHHyZPQogW0bAmtWkHz5mZe3UGdPQsHD948Dh+GI0fMERsL\nSoGnJ3h4mF88PDzMLyHDhlldefYppTJ10VYCXwgBe/bAggWwZAlERZlg79wZunQBHx/I51gruBMT\nzWWCmJibx/79cOCAmXF66CFzPPigOapVM4enJzzwgNXV254EvhDi3rSGnTvht99M0F+8CP37Q+/e\n0LatQ1w41dos5ImKgl27IDraHHv2QFKSuVRQqxbUrGkea9WCGjXMAp9MLlrJMyTwhRB/d/o0zJgB\nP/8MV67AoEEm6Js2tXQUf/myue4bHm6OXbvMkT8/eHuDlxfUqwd165qjcmXXC/X7kcAXQhhaQ2Ag\n/PSTeezdG557Dtq1syQ1z5+H0FDYscNc/92501xErVsXfH3NDFLDhibk3dzsXp5TksAXwtUlJ8Pc\nuTB+vAn2l16CwYPNzUt2LCE8/OYin23bzL1WPj7QpIn5xaJRIxP2BQvaraw8RwJfCFd16RJMmQJf\nfGEmtkeNgocftstoPjERNm+GjRvNERZmLp7+tcineXMzNVNAFoTblAS+EK4mOdlM23z4Ifj5maBv\n2jRX3zI+3qzgDAqCDRvMsscWLcx137ZtoVkz0wFB5K7MBr78nBXC2WkNixfD6NFmUfny5WaeJBec\nPw9r15pj3Tpz05KfH3ToYC4L+PrK6N2RyQhfCGcWFgYjR5q7jcaPh27dbDp1k5JiLqyuXg2rVplO\nCn8t0e/QwfxckYC3nkzpCJGXJSWZqZvJk+Gjj8zwOgvdIe8nMRFWroRly8yjuzt07WouA7RtaxpR\nCsciUzpC5FVbt8Kzz5oLsuHhZlF6Du3fb/qeLV5sXrJDB+jZE8aNM7NEIm+QEb4QzuLaNXj3XZg5\nE77+Gh59NNvTN1qb2aCFC81x6hT06QN9+5qwd4AbbUUWyAhfiLzk0CEYONA0homMNL3js0hrMwc/\ndy7Mm2c+798fJk0ySyYdrF2OyAUS+EI4uuXLTQvid94xF2izOKrfuxf++18T9Nevw2OPmcBv1Eja\nE7gaCXwhHFVqKrz/PkybZhqctWmT6afGx8OcOWb259gxc4PtzJlmWb6EvOuSwBfCEZ0/b+bok5PN\nusiKFTN8SlKSueg6bZrZp6R3b/jkE+jY0WYLeISTk8AXwtGcPAndu0Pr1ubibAYL3cPCTMjPmmU6\nSz77LMyfb/bzFuJWEvhCOJL9+82i92eegTFj7jn/cumSmbKZNMnsQDhsmGlM9uCD9i1XOBdZlimE\nowgNhUceMfP2L7xw11MiIkzIz55tuhsPH25uiJIpG9cmyzKFcCZr15orq5MmQb9+t30rOdmslf/m\nG7M68/nnTfDLDVEiqyTwhbDa+vUm7OfPh/btb3w5IcF0TvjxR7N136uvmhujpHeN7SWnJlMwf95v\nyC9/dYSw0rZtZpvB2bNvhH1UlGllv2ABDBhgetr4+FhcZx6gtebohaNEn45m75m97Duz78ZjUkoS\nx18/bnWJuU4CXwirREaatZNTp6I7dmJNoAn6nTvh5ZchJgbKl7e6SOeTkpbCwbMHiUqIYvep3ew5\nvedGyJcsVJI65etQp5w5utboSu1ytXmwjGtc7ZaLtkJYISYG/P1JHf858/INZtw4M1f/2mswdKj0\nsskMrTWx52OJTIgkMj6SyIRIok5FEXMmhsolK1O/Qn3ql69P/Qr1qVu+LnXL16V0Eftt72hP0h5Z\nCEcVF0daWz/+9HuXZzc/j4eH2bukRw+5C/ZeriZfZVfCLsJOhhEeH054fDgR8RGUKFQCbzdvvN28\naeDWgAZuDahXoR7FChazumS7klU6QjigiycucbV5T3649Ao7LjzPjBlZ6pjgEi4mXSTsZBg7Tuwg\n9EQooSdCOXj2IHXK18Gnog8+FX0YUG8ADSs2pFyxclaX61RkhC+EHZw7B998nUajTwZS3KMs5Rf+\nhHdDGc4npSQRHh9OyLEQth3fRsixEI6cP4K3mzdNKjehceXGNK7cGC83LwrlL2R1uQ5LpnSEcACJ\nifDVV/D99zDFfSwPF/iDYpv/gMKFrS7N7v5aJRN8NJjguGC2HNtCRHwEtcrWolmVZjR3b04z92Z4\nVfByiSWStiSBL4SFzp0zQf/tt2bt/Me+86k44Q2zDDMTjdDygtS0VKJORbExdiMbYjewMXYj11Ov\n08qjFS09WtLKoxVNqzSleCFp+pNTEvhCWODCBZg40fQ8e+QReO89eOj8TtP/YPVq04Q+j0pNSyU8\nPpx1h9YRdCSIjbEbcSvuhp+nH20929LWsy01ytRAyZVpm5OLtkLY0dWr8N13MGGCyfbNm82WsyQk\nQMd+Zk4nj4W91pro09GsObiGNYfW8OeRP6lcojL+1f15quFTTOk1hYolXOO3GWchI3whciA5GX7+\nGT78EFq0MI/166d/U2uzE3jDhvDZZ5bWaStnrpxh1YFVBB4MJPBAIPlUPro81IUuNbrQoXoHCXiL\nyJSOELkoLc20J/73v+Ghh+Djj6FZsztOmjjR7C24cSMUdM6LkGk6jdAToSyPWc6K/SuISojCv7o/\nXWt0pUuNLtQqW0umaByABL4QuWT1anOjVKFCZuDeocNdToqIgE6dYMsW0/nMiVxLucYfB/9g0d5F\nLNm3hNKFS9OjVg961OqBn6cfhQu43gojRydz+ELYWGioCfojR+DTT6F//3vcGXvlCjz+uGmM4yRh\nfzHpIkv2LWHBngUEHgykYcWG9KnThz+H/UmtcrWsLk/YiIzwhcjA4cNm86l168wUznPPZTBD89JL\nZk/amTMdulfCXyE/L2oeaw+txa+aHwPqDaBX7V5UKF7B6vJEFsgIX4gcOnfOjOSnTIGRI83eJCVK\nZPCkRYtg5UrT8tIBw/566nVW7l/JzIiZrDqwCj9PPwbVH8S0PtMoU7SM1eWJXCaBL8Qdrl834f7R\nR9Crl+liXKVKJp4YH2/2HFy4EEo7TldGrTXBR4OZGTGT+bvnU698PZ5o+AQ/PvIjZYuWtbo8YUcS\n+EKk0xqWLIE33jCbgQcGmhWVmfbqq2Y38VatcqvELEm4nMD08OlM3TkVrTVP+zzN9he2U+2BalaX\nJiwigS8EEBYGr78OJ0+a1ZTdumXxBZYtg+3bYdq0XKkvs9J0GoEHApkcOpm1h9bSt25ffur1E22q\ntpHlk0Iu2grXdvIkvPuuGdmPHQsvvpiNPWMvXoQGDcwdWJ065UqdGTl/7Ty/hP3CdyHfUbxQcUY0\nGcHj3o9TqnApS+oR9iUXbYW4j6Qk09xswgQzC7N3LzzwQDZf7N13oWNHS8I++nQ0E7dOZM6uOXSt\n2ZVpfabRumprGc2Lu5LAFy5Fa/j9dzNP36ABBAen97zJrq1bYd482LXLZjVmxqbYTUzYPIHgo8GM\naDKCqJeiqFyysl1rEM5HAl+4jIgI+Ne/zGKaH3+ELl1y+ILJyfDCC+YGq3K5v/NSmk5j6b6ljNs0\njpOXTvJ6q9eZNWCWy23nJ7JPAl/keWfOmBum5s838/TDh2djnv5uJkwAd3cYPNgGL3ZvWmsW7V3E\n2KCx5Ff5eavtW/Sv158C+eSfr8gam/yNUUp1A74C8gFTtdbj7vj+08AE4Gj6l77VWv9si/cW4l5S\nUsxI/oMP4LHHIDoaytpq2fmRI/D557BjR67dYKW1Zsm+JQQEBaDRfNjhQ3rV7iXz8yLbchz4Sql8\nwLdAJ+A4EKKUWqS1jr7j1Dla65E5fT8hMuOPP8yy+EqVYO1aM19vU2+9Ba+8AtWr2/iFjXWH1jFq\nzSiup14noH0Afev2laAXOWaLEX5zIEZrfQRAKTUH6APcGfjyt1XkukOHzAXZnTvNALxv31wYgG/a\nZFoeT5li4xc2q25GBY5iV8IuPu30KYO8BpFP5bP5+wjXZIu/Se5A3C2fH03/2p36K6XClFLzlFIe\nNnhfIW64fNlsJ9i0KTRuDLt3Q79+uRD2aWnwf/9nmuwUt91erAmXE3h52cv4TfOjfbX27Hl5D481\neEzCXtiUva76LAZmaa2TlVIvAr9ipoD+JiAg4MbH/v7++Pv726M+4aS0NhuRjB4NbdtCeDh45OZw\nYsYMyJ8fhgyxyculpqUyacckxgaNZaj3UKJfjqZcsdxf8SOcW1BQEEFBQVl+Xo7vtFVKtQQCtNbd\n0j9/C9B3Xri95fx8QKLW+m+3ucidtiIrdu40XSwvXTLtEPz8cvkNL12COnXgt9+gZcscv9yO4zv4\nx7J/UKRAEb7v+T0N3Gx9oUG4iszeaWuL3xdDgJpKqWpKqULAYMyI/tZiKt3yaR9gtw3eV7ioU6fM\n0sru3eHJJ00Lm1wPe4Bx48z2VjkM+wtJFxi5YiQ9Z/XkpWYvsX7Yegl7YRc5ntLRWqcqpV4BVnNz\nWeYepdT7QIjWeikwUinVG0gGEoFhOX1f4XqSk+G778z+sUOHwp49UMZeLdyPHIHvvzdd1nJgzcE1\nPLvoWR6u8TBRL0XJ9I2wK2meJpzCqlXmWqmnJ3z5JdSvb+cChgyB2rXhlmtMWXH5+mVGrxnNor2L\nmNJrCl1rdrVtfcKlSfM0kSfExJi2xbt3mw4GvXpZsJFUeLhZzD95craevjluM0///jStPFoR+Y9I\nHiiS3S5tQuSMrPkSDun8ebOevlUraNMGoqKgd2+Ldg187z1zo1WG+xveLjUtlYCgAAbMG8D4zuOZ\n3m+6hL2wlIzwhUNJTYWpU03vm0ceMU0oK1XK+Hm5ZssWM28/b16Wnnbq8imGLBhCSloKO4fvpFIJ\nK/8jhDBkhC8cxrp10KQJzJwJy5ebG1ktDXuAMWPMCL9IkUw/ZVPsJhpPbkzzKs0JfDJQwl44DBnh\nC8vt2wdvvmk2Cx83DgYOtGjq5k5//AGxsWaHlEzQWvPlli8Zt2kcP/f+mZ61e+ZufUJkkQS+sMzZ\ns6aT5YwZMGoUzJ2bpYF07tLajO7ffx8KFszw9Oup13lxyYvsStjFtue3yUbhwiHJlI6wu+vXzfaC\nderA1atmBc6oUQ4U9gBLl5oGPZnodZ94NZGuM7tyIekC64etl7AXDksCX9iN1vC//5k19IGBZs7+\nxx/Bzc3qyu6Qlmb2qf3oI8h3/38iBxIP0Hpqa5pUbsL8QfMpXsh2DdWEsDWZ0hF2ERxs1tNfvQqT\nJlmy33fmzZ9vft3o3fu+p22K3cTA+QMZ234sI5qOsFNxQmSfBL7IVdHR8PbbZmOoDz80vW8yGDRb\nKy3NjOzHj7/vleNV+1fx5MInmd5vOt1qdrNjgUJknyP/0xNO7Phx0+DMzw9at4a9e+Hppx087AEW\nL4ZChaDbvUN8yd4lPLnwSRYNXiRhL5yKo//zE07m7Fl45x3w9obSpW8uuSxa1OrKMkFrM7p/9917\nju5/2/0bzy95nmVDltGqais7FyhEzkjgC5u4fNlsAlW7tmlfHBZmZkXs1s3SFlatgmvXoE+fu357\nduRsXlnxCqueWEUz92Z2Lk6InJPAFzmSlATffgu1apkeYxs3wk8/QdWqVleWRX+N7seMueu804zw\nGby++nUCnwzEt5KvBQUKkXNy0VZky/XrMG0afPIJNGgAy5ZBo0ZWV5UDf/4J8fHw6KN/+9bSfUt5\nM/BN1j29jnoV6llQnBC2IYEvsiQ5GaZPN4PhOnVMT7EWLayuygY++sgsJ8qf/7Yvbzm6hWcWPcPS\nx5dK2AunJ4EvMuX6ddMC4ZNP4MEHTYOzNm2srspGtmwxV5efeOK2L0efjqbvnL780ucXWnjkhZ9q\nwtVJ4Iv7SkoyUzeffWbm6adNg3btrK7Kxj7+GEaPNssx0x2/eJxuM7vxWefPpAmayDMk8MVdXb5s\n+tJPmGCWWM6ebTYjyXPCw81dYfPn3/jSuWvn6DazG8ObDGeY7zDrahPCxiTwxW0SE82qm2+/NTdN\nLVwITZtaXVUu+s9/4NVXb3RuS9NpDPltCH6efrzV9i2LixPCtmRZpgAgLg5eew1q1oQjR8yild9+\ny+NhHxdndloZPvzGlz5c/yGXrl/iq25foRyiKb8QtiOB7+J27IChQ8HHx3weEWGmcurWtbYuu/jq\nK7O5yQNmn9kVMSuYHDqZuQPnUjB/xj3whXA2SmttdQ03KKW0I9WTV6WlmXXzn38OBw/CyJHwwgum\nFYLLOHcOHnrI3BLs6cmhs4doObUlvz36G20921pdnRBZopRCa53hr6Qyh+9Czp0zq2y++84Mal97\nDQYNytSGTnnP5MnQowd4enI1+SoD5g3gnbbvSNiLPE1G+C5g925zEXbOHNME8p//hJYtHWTfWCtc\nv25uJli+HN2wIc8tfo4ryVeYPWC2zNsLpyQjfBeXlGQuuk6aZO4pGj4coqKgcmWrK3MAs2aBlxf4\n+DAr4r9sObqFbS9sk7AXeZ6M8POYfftM87JffzUXYkeMMBs3ueS0zd1obW4s+PJLTrRsgM+PPqwY\nuoImVZpYXZkQ2SYjfBdy6ZK5b+jnn03gP/00bN5slliKO6xcCQUKoDt1YvjcvgxvMlzCXrgMGeE7\nqbQ02LQJfvkFFiwwN0k9+6y5DnlLhwBxp44d4dlnmeGtmbB5Attf3E6h/PIHJpybjPDzqN27TeOy\nWbOgRAl46inYswcqVbK6MiewcyfExHC8hx+vT23GyidWStgLlyIjfCdw+LCZspk927RsHzrUHA0b\nuvBKm+x4+ml0vXr08txI48qN+aDDB1ZXJIRNyAjfycXFmZCfO9fcHNW/v2n70r7931q2i8w4eRKW\nLGHOs82J2xPHgscWWF2REHYnI3wHEh1tmpUtXAgHDkDfvvDYY9Chg6yyybGxY7l6PJZqtZex+snV\nsk2hyFMyO8KXwLdQaqrZe2PpUhPyFy+akO/Xz4zkJeRt5No1qFaN99/vSGI1N77u/rXVFQlhUzKl\n46ASE83KwGXLYNUqcHeHnj3NtoFNm951/2yRU7NmcdG7Dt9d/INo/2irqxHCMjLCz2XJyWYUv3q1\nOfbsMaP3Rx4xSyirVrW6wjxOa/Dx4e3uhajU70lebfmq1RUJYXMywrdIWprZRGndOnNs2AA1asDD\nD5ttAlu3hsKFra7Shaxbx8Wr51ngUZhdzV6yuhohLCWBn0MpKSbgN2wwm4asXw/ly5sLrU88YXrL\nu7lZXaXrSvvicyY0u86Eh7+RHvfC5cmUThadOwchIRAcDBs3mukaT09o29bc7ervb+blhQOIieFK\ni8YMGN+E5c+tk+ZoIs+SVTo2kJQEkZFmV6itW024x8VBkybQooUJ+TZtoGxZqysVd5P0jxf5Pua/\ndJy5GZ9KPlaXI0SukTn8LLp8GXbtMhsghYbC9u3mAmuNGibgW7Y0O0M1aAAF5E/N8Z0/T+rMGRyd\n2FfCXoh0Lhddqalw6JDpDb9rl9nDNTwcYmPNPq4+PtCokek46esLxYpZXbHIjouTJrKqRiqvD/zc\n6lKEcBh5dkonKQn27zd3r/517NljjgoVzEjdy8s8+vqasJcbnfKI1FTOVC3P1Nc6MOoNaaEg8j6X\nmMO/csU0Fjt40IR7TMzN4/hxqF4d6tUzYV63rvm4fn0oWTLX/hOEA7iycB7RI4fwQPheHipbw+py\nhMh1eSLwL10yF0mPHLn9+Cvkz56FatXM9qQ1a0KtWjeP6tVlxO6qDjWvzfJW5Xj562CrSxHCLpw2\n8Lt10xw9CkePmmkZDw8T6rce1avDQw9BlSrSikDcLiliJ+faNiVh11a8PZtaXY4QduG0gb90qcbD\nw7QcKFNG+r2LrIka2J5wfYIhv+2zuhQh7Mauga+U6gZ8BeQDpmqtx93x/ULAdKAJcBp4TGsde5fX\ncah1+MK5pJw5xeWqldi7fgHNm/Wxuhwh7CazgZ/jCRGlVD7gW6Ar4AU8rpSqe8dpzwGJWutamB8M\n43P6vkLcKfLTf7HVp5yEvRD3YIsZ8OZAjNb6iNY6GZgD3Pkvrg/wa/rH/wM62eB9hbhBp6Tg9ss8\nir/xjtWlCOGwbBH47kDcLZ8fTf/aXc/RWqcC55RS0pBA2MyOn97ndKmCtO4v7Y+FuBer7rS951xT\nQEDAjY/9/f3x9/e3QznC2alvvuHyi89IgzThEoKCgggKCsry83J80VYp1RII0Fp3S//8LUDfeuFW\nKbUi/ZytSqn8wAmt9d+aBstFW5EdoYHTcR/4LOXiL1CgiPTCEK7HbhdtgRCgplKqWvpqnMHA4jvO\nWQI8nf7xIGCtDd5XCADiP3uP2Md7SNgLkYEcT+lorVOVUq8Aq7m5LHOPUup9IERrvRSYCsxQSsUA\nZzA/FITIsajoDbQKjqPI9D+tLkUIh+dwN145Uj3C8c16qhENT+WjwYodVpcihGWkH77I8w6e2kfb\npRGUXSYzhEJkhnSiEU5r9Vcj0VWqUKJVe6tLEcIpyAhfOKWTl07SYPYfPDD2O6tLEcJpyAhfOKU5\nM9/G60JhSg95xupShHAaEvjC6Zy7do5yP8+GEf+QTQ+EyAKZ0hFO54cVHzJyt6b4slFWlyKEU5ER\nvnAqsedjSZn8A/TubTYnFkJkmozwhVN5d9VovtlegOKBY6wuRQinIyN84TS2Ht1KycWrKO7lC76+\nVpcjhNOREb5wClpr/rXy/1gU9gAFPnnD6nKEcEoywhdOYV7UPGrvO0P5a/mgZ0+ryxHCKckIXzi8\naynXGL1mNNuiHkSN7Af581tdkhBOSQJfOLyvtnxF1wJ1cdsSAnPu7LwthMgsCXzh0I5fPM5/Nv+H\nmLi+MMwLSpa0uiQhnJa0RxYOS2tN7zm9aVm6AWOe+gm2b4fq1a0uSwiHI+2RhdObHj6duPNxLDzV\nCfz9JeyFyCEJfOGQjl04xpuBb7J66EoKtH8Mpk2zuiQhnJ4syxQOR2vNi0tf5OVmL+MbEgelS0Ob\nNlaXJYTTkxG+cDi/hv/K8YvHecfvHWjfAd58E1SG05NCiAzIRVvhUI5dOEajSY0IfDIQn0NXYMgQ\niImBAjI2EeJe5KKtcDppOo3nlzzPK81fwaeSD7w8AF57TcJeCBuREb5wGJ9u+JQl+5awfth6Ch48\nDK1bw+HDULy41aUJ4dBkhC+cSuCBQL7Z9g0hL4RQMH9B+OILGDFCwl4IG5IRvrBc7PlYmv/UnDkD\n5+Bf3R8SEqBOHYiOhooVrS5PCIeX2RG+LMsUlkpKSWLgvIG80foNE/YA330HgwZJ2AthYzLCF5Ya\nsXQEp6+cZv6g+Sil4MoVc0fthg1mlC+EyJDM4QuHN23nNIIOBxHyQogJezB31LZuLWEvRC6QwBeW\nCDwQyFt/vEXQ00GULJzeATMlxVysnT7d2uKEyKMk8IXdhZ4IZeiCofz26G/Uq1Dv5jfmzgV3d2mj\nIEQukcAXdnUg8QCPzHqEyb0m41fN7+Y30tLgk0/gyy+tK06IPE5W6Qi7SbicQNeZXfl3+3/Tt27f\n27/5++9QrBh06WJNcUK4AAl8YRcXky7S4789GOo9lBFNR9z+Ta3ho4/g3XelSZoQuUgCX+S6i0kX\neWT2IzSp3IQA/4C/n7Bypblg26uX3WsTwpVI4Itcdf7aebrO7EqdcnX44ZEfbi6//IvW8OGHMGYM\n5JO/jkLkJvkXJnJN4tVEOs/oTJPKTZj0yCTyqbv8dQsKgjNnYOBAu9cnhKuRwBe54tTlU3Sa3on2\n1dozsfvEv4/s//Lxx/D225A/v30LFMIFSeALmztx8QQdfu1Az1o9mdBlwr3DPjgY9u+HoUPtW6AQ\nLkoCX9hUZHwkLae2ZKj3UD7q+NG9wx7M3P3o0VCwoP0KFMKFyY1XwmZW7l/JUwufYmL3iQxuMPj+\nJ2/aBLt3w8KF9ilOCCGBL2zjx+0/EhAUwMLHFtLGM4PWCFrDO+/A2LFQuLB9ChRCSOCLnElNS2X0\nmtEs2beEjc9upGbZmhk/KTAQ4uPhySdzv0AhxA0S+CLb4i/FM2TBEBSK4OeCKVu0bMZP0tqsuf/g\nA9mcXAg7k4u2Ilv+PPInTSY3oU3VNqx6YlXmwh5Mz5yUFFl3L4QFZIglsiRNpzFh0wS+3PIlv/T9\nhW41u2X+yamppl/O+PFyV60QFpDAF5l28tJJnl/8PGeuniHkhRCqlq6atReYPRseeAB69MidAoUQ\n9yXDLJFSATLhAAAPIklEQVQp/9v9P3x/9KVhxYasH7Y+62F//bpZlfPxx9IRUwiLyAhf3Ffi1UT+\nueKfhBwL4ffBv9PSo2X2XmjqVKhRA/z9bVqfECLzcjTCV0qVUUqtVkrtVUqtUkqVvsd5qUqpUKXU\nTqXU7zl5T2E/y/Yto+EPDSlftDxhI8KyH/bnzsH778O4cbYtUAiRJUprnf0nKzUOOKO1Hq+UGg2U\n0Vq/dZfzLmitS2Xi9XRO6hG2cfTCUV5d+SrhJ8OZ3GsyHR/smLMXfOMNE/pTptimQCHEbZRSaK0z\nnCvNaeBHA+211vFKqUpAkNa67l3Ou6i1LpmJ15PAt1BKWgoTt07kkw2f8HKzl3mr7VsULVg0Zy8a\nEwOtWkFUFFSsaJtChRC3yWzg53QO301rHQ+gtT6plHK7x3mFlVLbgBRgnNZ6UQ7fV9jYn0f+5J8r\n/olbcTc2P7eZ2uVq2+aF33gD3nxTwl4IB5Bh4CulAoFb/7UqQAPv3uX0ew3Pq2mtTyilHgTWKqUi\ntNaH7nZiQEDAjY/9/f3xl4t8uWrfmX2MXjOa0BOhjOs8jse8Hrt/h8usWLMGIiNh7lzbvJ4QAoCg\noCCCgoKy/LycTunsAfxvmdJZp7Wul8FzpgFLtNYL7vI9mdKxk9NXTvN+0PvM3jWbUW1GMbLFSIoU\nKGK7N0hJgUaNzMXa/v1t97pCiL/J7JROTtfhLwaGpX/8NPC3qRql1ANKqULpH5cHWgO7c/i+IpvO\nXzvPB+s/oN535ufynpf3MKrNKNuGPZgLtOXKQb9+tn1dIUS25XSEXxaYB1QFjgCPaq3PKaWaAMO1\n1i8qpVoBk4BUzA+YL7XWv9zj9WSEn0suJF1g4taJfL31a7rX7M577d6jVrlaufNm585BnTqwcqUZ\n5QshcpVdVunYmgS+7Z2/dp7vQ77nyy1f8nCNh3mv3XvUKV8nd990xAjTFXPSpNx9HyEEYL9VOsJB\nHbtwjK+3fs3UnVPpXrM764etp16F+15esY0NG2DJErMMUwjhUCTw85iohCg+D/6c36N/5ymfpwh9\nMZRqD1Szz5snJcGLL8LXX5smaUIIhyKBnwekpKWwdN9Svtn2DVEJUbzS/BX2j9yf+R71tvLpp1C7\nNgwYYN/3FUJkiszhO7FTl08xdedUftj+A+4l3Xml+SsMrD+QQvkL2b+Y3buhXTsICwMPD/u/vxAu\nTObw86jUtFTWHFzDlJ1TCDwQSL96/Vjw6AKaVGliXVFpafDCC2bNvYS9EA5LAt9JHDp7iF/Df2Va\n2DQqFKvA842fZ0qvKZQuctcGpfY1aZJZlfOPf1hdiRDiPmRKx4GduXKG+bvnMzNiJnvP7GWw12Ce\na/wcvpV8rS7tpiNHoGlTCAoCLy+rqxHCJck6fCd1MekiS/YtYV7UPNYdXkf3mt15ouETdK3RlYL5\nC1pd3u1SUsyGJr17w6hRVlcjhMuSwHcif4X8/N3zWXtoLX6efgyqP4h+9fpRqnCG2whY54MPYP16\nCAyUTcmFsJAEvoM7cfEEi/cuZtHeRWyM3Ui7au141OtRetfpzQNFnGAN+6ZNZvnljh3g7m51NUK4\nNAl8B5Om0wg7GcaKmBUs3reYmDMxdK/VnT51+tCtZjfHHsnf6fx58PWFr76CPn2srkYIlyeB7wDO\nXj3LmoNrWLF/BSv2r6BU4VJ0r9mdXrV70a5aO8ebk88MrWHIEChTBr7/3upqhBDIOnxLJKUkEXw0\nmDUH1xB4MJDdp3bT1rMtPWv1ZIzfGGqUrWF1iTk3YwZEREBIiNWVCCGySEb4OZCcmsz249sJOhxE\n0JEgguOCqVehHp0f7EznhzrTumprChcobHWZthMeDp07wx9/QMOGVlcjhEgnUzq54GryVbYd28aG\n2A1siN1AcFwwNcrWwL+aP/7V/WlXrR1lipaxuszcceoUNG9u+uUMHmx1NUKIW0jg28Dxi8cJjgsm\n+Ggwm+I2EREfgbebN20929LWsy3tqrWzf4MyK1y/Dl26QNu28PHHVlcjhLiDBH4WXb5+mZ0nd7Lt\n2Da2HttKcFwwl5Mv09KjJa08WtGmahtaeLSgWMFiltRnGa3NhiYnTsDvv8t6eyEckAT+fVxNvkpk\nQiShJ0LZfnw7IcdD2J+4H68KXjSr0ozm7s1pVbUVtcrWQqkM/wzztu+/N8fmzVDKiZaOCuFCJPDT\nJV5NJPxkOOHx4YSdDCP0RCj7E/dTp3wdmlRuQuPKjWnu3hxvN++8dYHVFtauNUswN22CGnlghZEQ\neZTLBX5yajJ7z+wlMj6SXQm7iEyIJOxkGOeuncO7oje+FX3xqeRDk8pNaODWQMI9I9u3Q48eMHcu\ndOhgdTVCiPvIs4GfnJrM/sT97D61m6hTUTce9yfux7O0J95u3ni7edPArQG+lXx5sMyD5FMy75wl\nUVHQqZNpeyx30grh8Jw+8M9dO8fe03vZe2Yv0aejiT4dzZ7Tezh09hAepTzwcvPCq4IX9SvUx6uC\nF3XL16VowaIW/xfkAQcOQPv2MH68mc4RQjg8pw38NlPbsO/MPq6mXKV2udrULlebeuXrUa98PeqW\nr0utcrUoUqCI1aXmTUePgp8fvP222YxcCOEUnDbwgw4FUbtcbSqVqCQrZOwpPt6M7F94AV5/3epq\nhBBZ4LSB70j1uIxDh6BrV3jiCfj3v62uRgiRRZkNfLma6erCw800zsiREvZC5HHSLdOVrV8PgwbB\nt9/Co49aXY0QIpdJ4LuqhQth+HCYPdsswRRC5HkS+K5Ga5gwwexWtXIlNG5sdUVCCDuRwHcl58/D\nsGGmEdrWrVC1qtUVCSHsSC7auoqICGjaFDw84M8/JeyFcEES+Hmd1vDrr2aePiAAvvkGChWyuioh\nhAVkSicvO3ECXnoJ9u2DdeugQQOrKxJCWEhG+HmR1vDLL+DjY0I+NFTCXgghI/w8JzbW9MGJj4dV\nq6BRI6srEkI4CBnh5xUXL8J775mA9/ODbdsk7IUQt5HAd3bJyfDDD1C7Nhw5Ajt3wpgxULCg1ZUJ\nIRyMTOk4q9RUWLDAjOrd3WH5chnRCyHuSwLf2Vy9apZZ/uc/UKECfPEFdO8O0kpaCJEBCXxnceoU\nTJ5s1tE3a2ZW4bRpI0EvhMg0CXxHlppqVtr8/DOsWQP9+8Mff4CXl9WVCSGckGyA4mi0hshImDvX\nTN1UqQLPPQeDB0Pp0lZXJ4RwQJndAEVG+I4gLQ1CQsxF2AULzMqbAQNgxQrw9ra6OiFEHiGBb5UT\nJ8z0zJo1EBhoRu/9+5uRfaNGMjcvhLA5mdKxB63NvrHBweYICjKB36EDdO5sjpo1ra5SCOGkZBNz\nq2gNhw+bvWIjImD7dtiyxXSobNUKWraE9u3NKD5/fqurFULkAXYJfKXUQCAAqAc001qH3uO8bsBX\nmDt7p2qtx93jPOcJ/OvX4eBB04ly717zuGePueBaqhQ0bGialzVqZILew8PqioUQeZS9Ar8OkAZM\nAt64W+ArpfIB+4BOwHEgBBistY6+y7mOEfhpaXD6NBw/fvOIjTUj98OHTQuDkyfB0xPq1DFtDWrX\nJujaNfyffBLKlbP6vyBbgoKC8Pf3t7qMbJP6reXM9Ttz7WCnVTpa673pb3a/N2oOxGitj6SfOwfo\nA/wt8G1Oa7h2zWztd+GCeTx7FhITbz6eOQMJCebGplOnzMcJCWaUXqXKzaNaNejYEapXN4e7+9/6\n1QQFBODvpGEPzv+XXuq3ljPX78y1Z4U9Vum4A3G3fH4U80Pg7lasMNMlSUk3H69d+/tx5Yo5rl41\nj5cvw6VLtx8XLkCBAia8S5UyK2HKloUyZW4+uruDr69pU+DmdvOxSJHc/nMRQgi7yjDwlVKBQMVb\nvwRoYIzWeonNK/r6a3OBs3Dhm49Fitx+lCwJxYrdPIoWhRIloHhx8/jXUaqUbOcnhBDpbLJKRym1\nDnj9HnP4LYEArXW39M/fAvTdLtwqpRxgAl8IIZyPve+0vdebhQA1lVLVgBPAYODxu52YmYKFEEJk\nT442QFFK9VVKxQEtgaVKqRXpX6+slFoKoLVOBV4BVgNRwByt9Z6clS2EECKrHOrGKyGEELnH4bY4\nVEp9oJQKV0rtVEqtVEpVsrqmrFBKjVdK7VFKhSmlflNKlbK6pqxQSg1USu1SSqUqpRpbXU9mKKW6\nKaWilVL7lFKjra4nq5RSU5VS8UqpCKtrySqllIdSaq1SKkopFamUGml1TVmhlCqslNqanjeRSqmx\nVteUHUqpfEqpUKXU4vud53CBD4zXWvtorRsBywBn+x+wGvDSWvsCMcDbFteTVZFAP2C91YVkRvqN\nfd8CXQEv4HGlVF1rq8qyaZj6nVEK8JrW2gtoBbzsTH/+WuskoEN63vgC3ZVS91427rheBXZndJLD\nBb7W+tItnxbH3MnrNLTWa7TWf9W8BXCqngpa671a6xjufRHe0dy4sU9rnQz8dWOf09BabwTOWl1H\ndmitT2qtw9I/vgTswdx74zS01lfSPyyMWcjiVPPcSikPoAcwJaNzHS7wAZRSHymlYoEhwL+tricH\nngVWWF1EHne3G/ucKnDyCqVUdcwoeau1lWRN+nTITuAkEKi1DrG6piz6EniTTPygsiTwlVKBSqmI\nW47I9MdeAFrrd7XWnsB/gX9aUeP9ZFR/+jljgGSt9SwLS72rzNQvRFYopUoA/wNeveO3dIentU5L\nn9LxAFoopepbXVNmKaV6AvHpv2UpMvjN3JINULTWXTJ56ixgOaYjp8PIqH6l1DDMr1gd7VJQFmXh\nz98ZHAM8b/ncI/1rwk6UUgUwYT9Da73I6nqyS2t9If0m0m5kYj7cQbQBeiulegBFgZJKqela66fu\ndrLDTekopW7dCaQvZk7QaaS3gn4T6J1+QciZOcM8/o0b+5RShTA39t13pYKDynB05sB+BnZrrb+2\nupCsUkqVV0qVTv+4KNAFezR2tBGt9Ttaa0+t9UOYv/tr7xX24ICBD3yWPr0QBnTGXH12Jt8AJYDA\n9GVS31tdUFbc62Y6R5UXbuxTSs0CNgO1lVKxSqlnrK4ps5RSbYChQMf0pY2h6YMeZ1EZWJeeN1uB\nVVrr5RbXlGvkxishhHARjjjCF0IIkQsk8IUQwkVI4AshhIuQwBdCCBchgS+EEC5CAl8IIVyEBL4Q\nQrgICXwhhHAR/w9Y2z73ricXuAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt \n", "%matplotlib inline\n", "plt.plot(inputs, K.eval(sigmoid_f))\n", "plt.plot(inputs, K.eval(softsign_f))\n", "plt.plot(inputs, K.eval(tanh_f))" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAEACAYAAABBDJb9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHSpJREFUeJzt3Xl8VOW9x/HPDxGUTUUQ2VFAQUVFKCpcNcVrwb1W+6qt\ny6W1LtWqvVqtS29NXWrrfpW6Fa1LXYFbVEQLLmNdEQUE2URlURBwCYSEJYH87h9PIAkQMpM5mTMz\n+b5fr+c1Ezhz5tGX/faX33nOc8zdERGR3NYk7gmIiEj6FOYiInlAYS4ikgcU5iIieUBhLiKSBxTm\nIiJ5ILIwN7MmZjbVzJ6P6pwiIpKcKCvzS4HZEZ5PRESSFEmYm1kX4DhgVBTnExGR1ERVmd8JXAHo\ndlIRkRikHeZmdjyw3N2nA1Y5REQkgyzdvVnM7E/AmcAGYGegNfB/7n72FsepahcRqQd3r7NITrsy\nd/dr3L2bu+8NnA68tmWQVzs2Z8d1110X+xwa6/xzee6af/wj1+efLK0zFxHJA02jPJm7vwG8EeU5\nRUSkbqrMk1RQUBD3FNKSy/PP5bmD5h+3XJ9/stK+AJr0F5l5pr5LRCRfmBmeiQugIiISP4W5iEge\nUJiLiOQBhbmISB5QmIuI5AGFuYhIHlCYi4jkAYW5iEgeUJiLiOQBhbmISB5QmIuI5AGFuYhIHlCY\ni4jkAYW5iEgeUJiLiOQBhbmISB5QmIuI5AGFuYhIHlCYi4jkAYW5iEgeUJiLiOSBpumewMyaA/8G\nmlWeb4y7/zHd84qISPLM3dM/iVkLd19jZjsAbwOXuPv7WxzjUXyXiEhjYma4u9V1XCRtFndfU/m2\nOaE6V2qLSKwqKmDUKHjzzbhnkhmRhLmZNTGzacAyYJK7T4nivCIi9TF3Lnz/+/C3h4pp1nxl3NPJ\niLR75gDuXgH0N7M2wDgz28/dZ295XGFh4eb3BQUFFBQURPH1IiIArF8Pf/kL3H03jLh4NON7rGbc\n1K84dNC1cU8taYlEgkQikfLnIumZ1zih2f8Ape5+xxZ/rp65iDSYt9+Gc8+FXr2LaX3EHUzsdRDn\nr5jH9edcQZMddoh7evWWbM88itUs7YByd19lZjsDxwB/Tve8IiLJWLkSfvc7GD8ezrt8NE/tvpr2\nJa2ZtG9XDv7hKXFPL2Oi6Jl3BF43s+nAZOBf7j4hgvOKiNTKHZ59FvbfH9yKGXpZISP3bspp61fw\nxgW/4eC+A+OeYkZF3map9YvUZhGRiCxaBBddBAsXwi9/M5r7d1xN+5Ii7hl6VN6FeEaXJoqIZMKG\nDXD77TBgAAwcVMwhvyjkpnaNtxqvLpLVLCIiDW3KFDjvPGjXDm4eOZrb1zfO3nhtVJmLSFYrLoZL\nLoGTToJLLi2m03GFXLNTU05bv7zRV+PVKcxFJCu5w9ixsN9+UFoKt94/mr/YGD5vFqrxG8+7OqeX\nHEZNbRYRyToLF8Kvfw2ffw4PP1LMEzPv4L/9IM5fv5zrL7hSIb4NWs0iIlmjvBzuuivcxXnZZbDP\ngLH8z7KV7F6ykpF5uFIlGVrNIiI55Z13wiqVV16BV18vZt7OhfxqbRNOXb+Cf6s3Xie1WUQkVt99\nB1dfHe7gvOMOaNp2ND+Zupp2zbRSJRWqzEUkFu7w+OPhDs5mzeD9D4qZsLSQC0rDShVV46lRZS4i\nGTdnDlx4YVh2+Pzz8MXK0Rw9UdV4OlSZi0jGrFkD11wDRx4Jp54Kr71ezMi3Cjlf1XjaVJmLSEaM\nHw8XXwyHHw4zZsC7H4/m0H+qGo+KwlxEGtTChXDppeHpP3/7Gxx2eDEXPngHL+11EOevX8H1F+T2\nfuPZQm0WEWkQZWVw880wcCAMGhSq8VUVzzJg7FgWbL6L8yoFeURUmYtI5F59NdzB2atX2CCr/R7F\nnHtvZTW+brmq8QagMBeRyCxZApdfDpMnhzs5Tz4Zxk58lmveLGUP9cYblNosIpK28vKwz/hBB0Hv\n3jBrFhz9n8X8152FXLBmR368TjscNjRV5iKSlkQitFS6dIF33w1hPu6VsVy1ZBXtVY1njMJcROpl\nyRL47W/Dnip33gmnnAKla4r5rzvvYMJe2uEw09RmEZGUlJXBLbeElkrPnuFuzh/9CJ57dSzfGzOa\nz7TfeCxUmYtI0iZODGvG99qrqqVSUlq9Gl+hajwmCnMRqdPChWF/8Y8+CqtUTjgBzOD/Jo3mmqW6\nizMbqM0iIrVauxYKC8ONPwMGhFUqJ564qTeuPVWySdqVuZl1AR4DOgAVwN/c/e50zysi8dn0/M3f\n/jbcvTl1KnTrFv5uUzWulSrZJYo2ywbgMnefbmatgA/NbKK7z43g3CKSYTNnwiWXwLffwiOPQEFB\n+POS0mIuelArVbJV2mHu7suAZZXvS8xsDtAZUJiL5JDvvoM//AFGj4brroPzzoOmlQmhajz7Rdoz\nN7MewMHA5CjPKyINZ8MGGDkS+vQJ7ZXZs8ODI5o23bRSpao3rrs4s1dkq1kqWyxjgEvdvWRbxxQW\nFm5+X1BQQMGm399EJBaTJsFvfgMdO4bNsfr1q/q7ca+M5eolK9ld1XhGJRIJEolEyp8zd0/7y82s\nKTAeeMnd/7eWYzyK7xKR9H3ySbi4OWtWeIjySSeFpYawRW98xVyuP0e98TiZGe5udR0XVWX+MDC7\ntiAXkexQVAQ33ACPPQZXXhn6482bV/291o3nrrR75mY2BDgDGGpm08xsqpkNT39qIhKV8vKqvnhp\naajIr7yyKsi37I1r3XjuiWI1y9uAfgcTyULuMGECXHEFdO4Mr7xSsy8OqsbzhW7nF8lTH30UHhSx\nZAnceiscf3xVXxy0bjzfKMxF8szSpfD734eK/A9/gHPPhR13rHmMqvH8o71ZRPLE6tUhvPv1g/bt\nYd68sF68epCrN56/VJmL5Ljychg1Cq6/Ho45Juyj0r371sepGs9vCnORHOUOzz0HV10VHtk2YQL0\n77/1ceqNNw4Kc5Ec9NZbYWlhSUl4ZNvw4TUvbm6iarzxUJiL5JDZs+Hqq8NKlRtugJ/9DLZVZKsa\nb3wU5iI5YPHi8JCI8eNDW+WZZ2CnnbZ9rKrxxkmrWUSy2IoVYSOs/v3DTT/z54fHt20ryLVSpXFT\nZS6ShVatChtgjRwJZ5wR2isdOtR+vHY4FIW5SBYpLYV77glBfuyx8MEHsNdetR9fsze+Qr3xRkxh\nLpIF1q2DBx+Em2+GI46AN96Avn23/xn1xqU6hblIjMrK4OGH4aab4KCDal8rXp1Wqsi2KMxFYlBe\nDo8+CjfeGLalHTMGDj207s/pWZxSG4W5SAaVl8Pjj4cQ79kTnnwSBg+u+3Nb98avUDUuNSjMRTKg\nrCxU4n/6UwjxRx8NvfFkqBqXZCjMRRrQ+vXw97+HC5t9+sA//gFDhiT3WfXGJRUKc5EGUFoaVqfc\nfjsceGC4Y/Oww5L/vNaNS6oU5iIRWrkS/vpXuPvu0EZ5/nk45JDkP1+9Gj9v3XJuuOB3qsYlKQpz\nkQgsWwZ33RX2FT/uOEgk6l4nviWtG5d0aG8WkTR8+imcfz7st1/YjnbKFHjssdSCXHuqSBRUmYvU\nw5Qp4SHJr78Ov/pVeERb+/apn0fVuERFYS6SpIoKePFFuO02WLQILr003L3ZqlXq59JKFYlaJGFu\nZg8BJwDL3f3AKM4pki3WrAlLCu+4IwT3FVfAqadC03r+r0fVuDSEqHrmfweGRXQukaywZAlcc014\nOPKLL8L994f2yk9+Ur8gV29cGlIklbm7v2Vm23geuEhucYfJk8PSwpdfhrPOgnffhV690juvqnFp\naOqZixC2oH3mmbCXeFERXHQR3Hcf7LJLeudVb1wyJaNhXlhYuPl9QUEBBQUFmfx6ka0sXAgPPAAP\nPQQDBsAf/xiedB9F3qoal/pIJBIkEomUP2fuHskEKtssL9R2AdTMPKrvEknHxo3w0kuh8n7vvdBK\nufBC2GefaM5foxpfMZfrz1E1LvVnZri71XVclJW5VQ6RrLRkSdj06sEHoWPHsD589Gho0SK671A1\nLnGJZDWLmT0JvAPsY2aLzeznUZxXJF3l5fDcc3DiidCvH3zxBYwbFy5yjhgRXZBrpYrELbI2S51f\npDaLZNCcOWHP8EcfDfuH//KX8OMfQ8uW0X/X5h0OS1YycuhRCnGJVBxtFpFYFRWFFSmPPBLu0Dzz\nTHjttdQ3vErW1k//UW9c4qPKXHJaWVlYD/6Pf8C//gXDhoX2yQ9+UP87NJOxuTdeUqRqXBqUKnPJ\nW+7wzjvwxBPhAmafPqEKv/9+aNu2Yb9b68YlWynMJSe4w7Rp8PTT8Oyz4cLlmWeG2+t79MjMHPQs\nTslmCnPJWu4wYwaMGRNCvKICTj89PL2nXz+wDC2E3bo3foWqcck6CnPJKu6h2h47NoyNG8MOhU89\nFe7QzFSAb6JqXHKFwlxiV1YGb7wR1oM//zzsvDOcdlpop/Tvn/kAB1XjknsU5hKLoqKw+uT558Nq\nlN694eSTw232++0XT4BvompccpGWJkpGuMPMmTBhQtgb/KOP4Kij4IQTwt2ZnTrFPUPtqSLZKdml\niQpzaTDffAOvvBIq8IkToXlzOP748PT6goLQTskWm6vxkiLu0bpxySIKc8m4NWvC+u9XXw0hPm9e\nqL6HDQs38fTuHW/7ZFtUjUu2U5hLg1u3Dt5/P1y8fO21sArloINg6FA4+mgYPBiaNYt7lrXTniqS\nCxTmErnVq8P+32++GQL8ww/DxcojjwwBfsQR0Lp13LOsm6pxySUKc0mLOyxYEJ5/+c478Pbb8Omn\nYangkUeGMXhwboR3ddpTRXKNwlxS8t138MEHYZ/vyZND+2THHeGww2DIkDD698/utsn2qBqXXKUw\nl1p9/TVMnx7aJB98EF6//TaE9aGHVo0uXeKeaTRUjUsuU5gL5eUwfz58/HFY1z19ehilpeFC5YAB\nVWOffaBJJM+dyh6qxiUfKMwbkfJy+Oyz8HSdOXNg1qwQ4PPnQ9eusP/+IbwPPji8du+efUsEo6Zq\nXPKFwjzPuIf2yCef1Bxz54YLlZ07hyfq9O0LBxwQRt++2XVjTiaoGpd8ozDPQevXw+LFsHBhCOjP\nPqs5mjaFffcNLZFNY9PPO+0U9+zjp2pc8pHCPMu4hxUjX34ZnhC/eHHNsXBhqLw7dw4PW9hrr/Ag\n4upjt93i/qfITqrGJZ8pzDOkoiLsALh8OSxbBl99VTWWLg2vX34JS5aE6rlz59DH7tatanTtGsK7\nc+eGfW5lPtJdnJLvFOb1tGFDCOdvvgnL9Ta9fv11GCtWVL0uXx7et2wJHTrAnntCx45hdOpU9dq5\ncxgtW8b9T5c/VI1LY5HRMDez4cBdQBPgIXf/yzaOyUiYb9gQbjsvLoZVq7YeK1dWjaKi8Prdd1Wj\ntBR23RXatYPdd696bd++auyxR3jt0CG8b968wf+xpJpxk8Zw9dJVqsalUchYmJtZE+AT4GhgKTAF\nON3d525xnLs77uHJMmvXVo01a2q+3zRKS8NrSUl4X1pa9b6kJIT2ptdNY/36cIt569awyy5h7Lpr\nzfdbjt13D091b9sW2rTJv/XW+ULVuDRGyYZ5FB3aQcB8d19U+cVPAycDc7c8sEWLsNNe06ZhyVz1\n0aJF1WuLFqElUf39LruElkXLltCqVQjrLV/btAnnyPc11I3R5mpcT/8R2aYowrwz8EW1n78kBPxW\nRr7xBDvumH7luwEoqhwArK0cK9I7r2SfivXlTHrzc17au3/lszhVjYtsS0bXTtx52583v++wfwc6\nHNAhk18vOab1YuPfbY+m3c5tVY1Lo5FIJEgkEil/Loqe+WFAobsPr/z5KsC3vAiaK6tZJH5lRUXc\n9MQT3Ne1K7c1acJZxx+P6UKGNFKZ7JlPAXqZWXfgK+B04KcRnFcaG3emPfccI1atottuuzF98GA6\ntW8f96xEckLaYe7uG83s18BEqpYmzkl7ZtKolH30ETeNG8d9hxzC7T16cOaRR2K6ki2SNN00JPH6\n+mum3X47I/r2pVvbtjwwdCiddHeVyGaZbLOIpG7tWsr++lduWrCA+046idt69eKsvfdWNS5ST7qq\nJJlVVgb33sv0o49mUPfufHjGGUwvKODsnj0V5CJpUJhLZmzYAI88Qtl++3FdURE/uPlmLjviCF44\n/HA6aT8EkbSpzSINa906ePRRuOUWpg0cyIhRo+jati3T991XIS4SIYW5NIziYrj/frjrLsoGDuSm\nhx/mvqZNua1nT87q0EEtFZGIKcwlWp9/DvfeC488AsOGMW38eEZs3EjX5s1VjYs0IPXMJX0VFTBx\nIpx4Ihx6KDRpQtn773PdjTcybO1aLu/alRf69VOQizQgVeZSf8uWweOPw6hR4TFKF18MzzzDtI0b\nGTF3bqjGBw5UiItkgMJcUrNhA0yYAA8/DIkE/OhH8NBDMGQIZe7ctGgR9y1dqt64SIYpzKVu7vDu\nu/DUUzB6NOy9N5xzTqjKW7cGYNrq1YyYO5duO+2kalwkBgpz2TZ3mD4dnnkGnn46PCXkpz+FN9+E\n3r03H1ZWUcGNixZx/9Kl3N6zJ2eqGheJhcJcqmzcCG+9Bf/8J4wbBzvsAKedBs89BwceuNUjnKZW\nVuPdVY2LxE5h3th9+21YifLSS/Dyy9ClC5xyCrzwAhxwwDafwVdWUbG5N65qXCQ7aNfExqa8HD74\nACZNCgE+axYUFMDw4XDccdCjx3Y/Xr03/sA++6gaF2lgye6aqDDPdxs2wIwZ8Prr8NproY2y994w\ndCgceywccQQkEcjVq3GtVBHJHIV5Y1VSApMnw9tvh+B+7z3o3DmE99ChcNRR0K5dSqecXlmNd2ne\nnAd1F6dIRinMG4Py8tAmef/9qvHZZ3DwwfAf/wFDhsDgwSmH9yaqxkXipzDPNyUl8PHHMG1a1Zg9\nG7p1C7fQDxoUxoEHQrNmaX/dpt54V1XjIrFSmOeq0lL45BOYMydU3TNnhhBftgz69IFDDoH+/cM4\n8EBo1SrSr1c1LpJdFObZrLwcFi6ETz8NY/58mDcP5s6FFSugV68Q3AccEEa/ftCzZ1j33YC0UkUk\n+yjM47RhA3z1FSxeDIsWwYIFNceSJeGiZK9eYfTsGcK7T5+wNLCBQ3tLWjcukr0U5g3BPfSuly0L\nYb10aQjm6mPxYli+PFx07NYtjL32qho9ekD37kktB8wEVeMi2U1hnqx16+Cbb2qOr78OY8WKMJYv\nD+Orr8JnOnaEDh1Cdb3l6NYNOnWK5CJkQ1JvXCQ3ZCTMzew0oBDoC3zP3adu59iGCfOyMli9Glat\nCo8qq/66cmUYRUVVr0VF8N13VaO8HNq3D5V09dGhA+yxR/i7PfaAPfcMo1Wrbd7inku0blwkdyQb\n5unuzTITOAV4IKmjFy+GtWtrjjVrao7S0qqx6eeSkhDYJSVV71evDqFdURG2YW3TBnbZpebrbrvB\nrruGEO7bN7xv27bmaNky58M5WdWr8Vt79uRsVeMieSOtMHf3eQCWbCIMGQI771w1WrQIo/r7li3D\na7t24X3LliGsW7WqOdq0CX++006NJozTUX3duHY4FMk/md018YsvMvp1ot64SGNRZ5ib2SSgQ/U/\nAhy41t1fSOXLCgsLN78vKCigoKAglY9LilSNi+SeRCJBIpFI+XORrGYxs9eBy2O5ACpbUTUukj8y\ndQG0xndGeC6pJ1XjIo1TuksTfwjcA7QDVgLT3f3YWo5VZd6AVI2L5CfdNNSIaIdDkfwVR5tFMkzV\nuIhsojDPUeqNi0h1CvMco2pcRLZFYZ5DVI2LSG0U5jlA1biI1EVhnuWq73CoalxEaqMwz1KqxkUk\nFQrzLKTeuIikSmGeRVSNi0h9KcyzRPVncaoaF5FUKcxjVr0av71nT85UNS4i9aAwj5GqcRGJisI8\nBqrGRSRqCvMMUzUuIg1BYZ4hWqkiIg1JYZ4BqsZFpKEpzBuQqnERyRSFeQPRnioikkkK84ipGheR\nOCjMI6Q9VUQkLgrzCKgaF5G4KczTpGpcRLKBwryeVI2LSDZJK8zN7BbgRGA98Bnwc3cvjmJi2UzV\nuIhkmyZpfn4isL+7HwzMB65Of0rZq6yigusWLGDYjBlc3rUrL/TrpyAXkayQVmXu7q9U+/E94NT0\nppO9VI2LSDaLsmf+C+DpCM+XFdQbF5FcUGeYm9kkoEP1PwIcuNbdX6g85lqg3N2f3N65CgsLN78v\nKCigoKAg9RlnkO7iFJFMSyQSJBKJlD9n7p7WF5vZCOBcYKi7r9/OcZ7ud2WKqnERyRZmhrvXGUDp\nrmYZDlwBHLm9IM8l01av5ueqxkUkx6RVmZvZfKAZ8G3lH73n7hfWcmxWV+aqxkUkG2WkMnf33ul8\nPltopYqI5LpGfQeonsUpIvmi0Ya5nv4jIvmk0YW5qnERyUeNKsxVjYtIvmoUYa5qXETyXd6Huapx\nEWkM8jbMtW5cRBqTvAxz7akiIo1NXoV59Wr81p49OVvVuIg0EnkT5rqLU0Qas5wPc/XGRURyPMxV\njYuIBDkZ5qrGRURqyrkwVzUuIrK1nAlzVeMiIrXLiTDXXZwiItuX1WFeVlHBjYsWcb/2VBER2a6s\nDfOpldV4d1XjIiJ1yrow1w6HIiKpy6owV29cRKR+siLMtVJFRCQ9sYe5djgUEUlfWmFuZtcDJwMV\nwHJghLsvS+azqsZFRKLTJM3P3+LuB7l7f+BF4LpkPjRt9Wq+9+GHfLh6NdMHDuTsPffM+iBPJBJx\nTyEtuTz/XJ47aP5xy/X5JyutMHf3kmo/tiRU6LUqq6jgugULGDZjBpd37coL/frlTFsl1/+DyOX5\n5/LcQfOPW67PP1lp98zN7EbgbGAl8P3tHfu9Dz/UnioiIg2gzsrczCaZ2YxqY2bl64kA7v57d+8G\nPAFcvL1z5Vo1LiKSK8zdozmRWVdggrv3q+Xvo/kiEZFGxt3rvKiY7mqWXu7+aeWPPwTmpDMZERGp\nn7QqczMbA+xDuPC5CLjA3b+KaG4iIpKkyNosIiISn3TXmafEzK43s4/MbJqZvWxme2by+9NlZreY\n2Rwzm25mY82sTdxzSpaZnWZmH5vZRjM7JO75JMvMhpvZXDP7xMx+F/d8UmFmD5nZcjObEfdc6sPM\nupjZa2Y2q3LhwyVxzykVZtbczCZX5s1MM0vqPphsYmZNzGyqmT1f17EZDXPqeZNRFpkI7O/uBwPz\ngatjnk8qZgKnAG/EPZFkmVkTYCQwDNgf+KmZ9Yl3Vin5O2HuuWoDcJm77w8cDlyUS//+3X098P3K\nvDkYONbMBsU8rVRdCsxO5sCMhnmqNxllG3d/xd03zfk9oEuc80mFu89z9/lALl2IHgTMd/dF7l4O\nPE3YPiInuPtbQFHc86gvd1/m7tMr35cQFjh0jndWqXH3NZVvmxMWfORMX9nMugDHAaOSOT7TlTlm\ndqOZLQZ+Bvwh098foV8AL8U9iTzXGfii2s9fkmNhki/MrAehup0c70xSU9mmmAYsAya5+5S455SC\nO4ErSPL/gCIP8yhvMopDXfOvPOZaoNzdn4xxqltJZu4iqTKzVsAY4NItfrvOeu5eUdlm6QIcamb7\nxT2nZJjZ8cDyyt+MjCR+o458C1x3PybJQ58EJgCFUc8hHXXN38xGEH71GZqRCaUghX/3uWIJ0K3a\nz10q/0wyxMyaEoL8cXd/Lu751Je7F5vZ68BwkuxBx2wIcJKZHQfsDLQ2s8fc/ezaPpDp1Sy9qv24\n3ZuMspGZDSf82nNS5cWVXJUrffMpQC8z625mzYDTgTqv6meZpKqqLPYwMNvd/zfuiaTKzNqZ2S6V\n73cGjgHmxjur5Lj7Ne7ezd33Jvx3/9r2ghwy3zP/c+Wv/dOB/yRcqc0l9wCtgEmVy4XujXtCyTKz\nH5rZF8BhwHgzy/p+v7tvBH5NWEU0C3ja3XOmADCzJ4F3gH3MbLGZ/TzuOaXCzIYAZwBDK5f3Ta0s\naHJFR+D1yryZDPzL3SfEPKcGo5uGRETyQMZXs4iISPQU5iIieUBhLiKSBxTmIiJ5QGEuIpIHFOYi\nInlAYS4ikgcU5iIieeD/AVbGUQuZO+IhAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(inputs, K.eval(softplus_f))\n", "plt.plot(inputs, K.eval(relu_f))\n", "plt.plot(inputs, K.eval(elu_f))\n", "plt.plot(inputs, linear_out)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }